Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics
نویسندگان
چکیده
We propose a method for generating well-shaped curved unstructured meshes using a nonlinear elasticity analogy. The geometry of the domain to be meshed is represented as an elastic solid. The undeformed geometry is the initial mesh of linear triangular or tetrahedral elements. The external loading results from prescribing a boundary displacement to be that of the curved geometry, and the final configuration is determined by solving for the equilibrium configuration. The deformations are represented using piecewise polynomials within each element of the original mesh. When the mesh is sufficiently fine to resolve the solid deformation, this method guarantees non-intersecting elements even for highly distorted or anisotropic initial meshes. We describe the method and the solution procedures, and we show a number of examples of two and three dimensional simplex meshes with curved boundaries. We also demonstrate how to use the technique for local refinement of non-curved meshes in the presence of curved boundaries.
منابع مشابه
Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کاملA coarse-to-fine approach for efficient deformation of curved high-order meshes
We propose a coarse-to-fine approach for generating fine and curved highorder tetrahedral meshes. The proposed approach is performed in three steps: (1) generate a coarse reference mesh; (2) map this to a coarse and curved highorder mesh; and (3) refine the curved high-order mesh. The approach provides high-order meshes that are valid, have the desired interpolation degree, and can be computed ...
متن کاملGeneration of quadrilateral mesh over analytical curved surfaces
An automatic adaptive quadrilateral mesh conversion scheme for the generation of adaptive refinement meshes over analytical curved surfaces is proposed. The starting point of the quadrilateral mesh generator is a background triangular mesh of the curved surface. By a carefully controlled process to merge two triangles at a time the triangular mesh can be completely converted to quadrilaterals. ...
متن کاملFinite element mesh generation and adaptive meshing
This review paper gives a detailed account of the development of mesh generation techniques on planar regions, over curved surfaces and within volumes for the past years. Emphasis will be on the generation of the unstructured meshes for purpose of complex industrial applications and adaptive refinement finite element analysis. Over planar domains and on curved surfaces, triangular and quadrilat...
متن کاملCurved mesh correction and adaptation tool to improve COMPASS electromagnetic analyses
SLAC performs large-scale simulations for the next-generation accelerator design using higher-order finite elements. This method requires using valid curved meshes and adaptive mesh refinement in complex 3D curved domains to achieve its fast rate of convergence. ITAPS has developed a procedure to address those mesh requirements to enable petascale electromagnetic accelerator simulations by SLAC...
متن کامل